OpenDialog Docs
opendialog.aiStart BuildingTalk to an expert
  • GETTING STARTED
    • Introduction
    • Getting ready
    • Billing and plans
    • Quick Start AI Agents
      • Quick Start AI Agent
      • The "Start from Scratch" AI Agent
        • Chat Management Conversation
        • Welcome Conversation
        • Topic Conversation
        • Global No Match Conversation
        • Supporting LLM Actions
        • Semantic Classifier: Query Classifier
      • A Process Handling AI Agent
  • STEP BY STEP GUIDES
    • AI Agent Creation Overview
    • Add a new topic of discussion
    • Use knowledge sources via RAG
    • Adding a structured conversation
    • Add a 3rd party integration
    • Test and tweak your AI Agent
    • Publish your AI Agent
  • CORE CONCEPTS
    • OpenDialog Approach
      • Designing Conversational AI Agents
    • OpenDialog Platform
      • Scenarios
        • Conversations
        • Scenes
        • Turns and intents
      • Language Services
      • OpenDialog Account Management
        • Creating and managing users
        • Deleting OpenDialog account
        • Account Security
    • OpenDialog Conversation Engine
    • Contexts and attributes
      • Contexts
      • Attributes
      • Attribute Management
      • Conditions and operators
      • Composite Attributes
  • CREATE AI APPLICATIONS
    • Designing your application
      • Conversation Design
        • Conversational Patterns
          • Introduction to conversational patterns
          • Building robust assistants
            • Contextual help
            • Restart
            • End chat
            • Contextual and Global No Match
            • Contextual FAQ
          • Openings
            • Anatomy of an opening
            • Transactional openings
            • Additional information
          • Authentication
            • Components
            • Example dialog
            • Using in OpenDialog
          • Information collection
            • Components
            • Example dialog
            • Using in OpenDialog
            • Additional information
          • Recommendations
            • Components
            • Example dialog
            • Additional information
          • Extended telling
            • Components
            • Example dialog
            • Additional information
          • Repair
            • Types of repair
            • User request not understood
            • Example dialog
            • Additional information
          • Transfer
            • Components
            • Example dialog
            • Additional information
          • Closing
            • Components
            • Example dialog
            • Using in OpenDialog
            • Additional information
        • Best practices
          • Use Case
          • Subject Matter Expertise
          • Business Goals
          • User needs
            • Primary research
            • Secondary research
            • Outcome: user profile
          • Assistant personality
          • Sample dialogs
          • Conversation structure
          • API Integration Capabilities
          • NLU modeling
          • Testing strategy
          • The team
            • What does a conversation designer do
          • Select resources
      • Message Design
        • Message editor
        • Constructing Messages
        • Message Conditions
        • Messages best practices
        • Subsequent Messages - Virtual Intents
        • Using Attributes in Messages
        • Using Markdown in messages
        • Message Types
          • Text Message
          • Image Message
          • Button Message
          • Date Picker Message
          • Audio Message
          • Form Message
          • Full Page Message
          • Conversation Handover message
          • Autocomplete Message
          • Address Autocomplete Message
          • List Message
          • Rich Message
          • Location Message
          • E-Sign Message
          • File Upload Message
          • Meta Messages
            • Progress Bar Message
          • Attribute Message
      • Webchat Interface design
        • Webchat Interface Settings
        • Webchat Controls
      • Accessibility
      • Inclusive design
    • Leveraging Generative AI
      • Language Services
        • Semantic Intent Classifier
          • OpenAI
          • Azure
          • Google Gemini
          • Output attributes
        • Retrieval Augmented Generation
        • Example-based intent classification [Deprecated]
      • Interpreters
        • Available interpreters
          • OpenDialog interpreter
          • Amazon Lex interpreter
          • Google Dialogflow
            • Google Dialogflow interpreter
            • Google Dialogflow Knowledge Base
          • OpenAI interpreter
        • Using a language service interpreter
        • Interpreter Orchestration
        • Troubleshooting interpreters
      • LLM Actions
        • OpenAI
        • Azure OpenAI
        • Output attributes
        • Using conversation history (memory) in LLM actions
        • LLM Action Analytics
    • 3rd party Integrations in your application
      • Webhook actions
      • Actions from library
        • Freshdesk Action
        • Send to Email Action
        • Set Attributes Action
      • Conversation Hand-off
        • Chatwoot
    • Previewing your application
    • Launching your application
    • Monitoring your application
    • Debugging your application
    • Translating your application
    • FAQ
    • Troubleshooting and Common Problems
  • Developing With OpenDialog
    • Integrating with OpenDialog
    • Actions
      • Webhook actions
      • LLM actions
    • WebChat
      • Chat API
      • WebChat authentication
      • User Tracking
      • Load Webchat within page Element
      • How to enable JavaScript in your browser
      • SDK
        • Methods
        • Events
        • Custom Components
    • External APIs
  • Release Notes
    • Version 3 Upgrade Guide
    • Release Notes
Powered by GitBook
On this page
  • Role of LLMs
  • References
  1. CREATE AI APPLICATIONS
  2. Designing your application
  3. Conversation Design

Best practices

PreviousAdditional informationNextUse Case

Last updated 11 months ago

Creating great conversational experiences is critical to the success of the conversational assistant and the brand. Surveys provide us with insights that drive this point home:

73% of survey respondents reported they would not use a bot again after a bad experience.*

And

64% would switch to a competitor after just one bad experience.**

To create great conversational experiences we need to be informed before we start designing. The term "informed design" was coined in the area of education and "enables students to enhance their own related knowledge and skill base before attempting to suggest design solutions.***"

Similarly, in conversation design, we enhance our knowledge and skill base before we start designing. We require an understanding of the use case, the subject matter, the business goals and how success will be measured. We need insights into the user's needs, wants and expectations. And we need to define the personality and tone for the assistant.

Armed with all this knowledge, we can then create the journey and sample dialogs for the assistant, and implement this in the OpenDialog platform.

And once a prototype is created, we can test it, get user feedback, and improve the experience.

Following this process ensures that the conversational experience is engaging and useful. Because, remember, any poor experience a user has with an assistant will have a negative impact.

We will review each step of the process in detail in the next pages.

Role of LLMs

Large language models can play a useful role in building conversational experiences but they are not the end-all-be-all.

Depending on the type of activity, LLMs can play a certain role in the work of the conversation designer and the teams. Some roles we will be referring to in this section:

  • Brainstorming partner (term used by OpenAI CEO):

  • get ideas about how users expect to use a certain product or service. What may be important to users, etc. This is not

  • Tutor: educate on subject matter expertise, e.g. requirements in regulated industries that influence the user experience (possibilities)

  • Co-designer:

    • dialog composer

    • sample dialog generation

    • sample utterance generation

    • generate ideas for user or stakeholder interview questions (research design)

  • Analysis:

    • competitive feature analysis

  • Summarizer:

    • summarize lengthy knowledge base answers for a better experience in the chatbot channel (shorter answers are preferred)

References

*

**

***

https://medium.com/salesforce-ux/conversation-design-is-the-future-of-ux-8e52f4793cfc
https://aws.amazon.com/blogs/apn/what-do-consumers-really-think-of-automated-customer-service/
https://www.hofstra.edu/PDF/Tec_Informed_Design_Tech_Teacher.pdf